

Zwenkauer Strasse 159, D.04420 Markranstädt T.: +49 34205-755-0 F.: +49 34205-755-40 www.foedisch.de vertrieb@foedisch.de

Product information GMD 12

The GMD 12 is an automatic system for isocinetic dust and particulate matter measurement in exhaust gas channels and stacks. These gravimetric dust measurements are used as reference measuring method for the calibration of dust measuring devices.

Characteristics and function

The GMD 12 is able to record independently all parameters being necessary for the dust measurement (e.g. humidity of the measuring gas, velocity in the stack as well as temperature and pressure).

Low concentrations of dust and particulate matter can be determined by combining different nozzles with the sampling probe for particulate matter.

Due to the optional plane filter holder the GMD 12 is also approved for m e as u r e m e n t s complying with official requirements according to DIN EN 13284-1.

accessories for particulate matter measurement

Apart from measuring and probe case the system includes an accessory case and a pump case with an external high-performance pump.

The comfortable accessory box contains all necessary cables, hoses, filter sleeves as well as the separate printer.

Highlights of the device:

- " automatic sampling system for gravimetric dust measurements
- ergonomic sampling probe with integrated aerosol filter
- " highly-resolving pivotable graphic display
- Data transfer via RS232 interface or cmpact flash memory card

Zwenkauer Strasse 159, D.04420 Markranstädt T.: +49 34205-755-0 F.: +49 34205-755-40 www.foedisch.de vertrieb@foedisch.de

Operation of GMD 12

Setup:	date, time etc.
Calculate:	channel dimensions
	proposal of sampling points
Zero:	zero point calibration of all sensors
Test:	determine nozzle diameter
	humidity measurement
Dust:	start dust measurement
	isocinetically or fixed flow
Data:	measuring data memory
Maintenance:	service menü

Procedure of measurement

1. Measurement of absolute humidity in the exhaust gas with humidity probe

2. Measurement of the exhaust gas velocity with the combined probe for differential pressure p, gas velocity and temperature

3. Selection of the dust probe as result of the velocity measurement

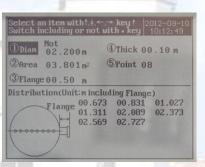
4. Connection of dust probe with tube and insertion of the filter element

5. Start of measurement by pressing the button and wait for the end of measurement - the exhaust and sample parameters are automatically saved

6. Enter the dust mass determined after the the filter has been weighed.

7. The result of the dust sampling is automatically calculated output of values e.g. By means of integrated printer respectively via interface.

Measuring variables


Dynamic pressure: Static pressure: Baro pressure: Flow (sampling): Temperature (before flow meter): Temperature (exhaust gas) Humidity: Response time: 0 ... 2.000 Pa -30 ... 30 mbar 70 ... 110 kPa 5 ... 60 l/min -30 ... 150 °C 0 ... 400 °C 0 ... 40 Vol% < 8 sec

General technical data

Case: Media temperature: Ambient temperature: Dew point difference: Power supply: portable suitcase (control unit integrated) max. 400 °C -20 ... +50 °C min. +5 K 230 VAC / 50 Hz, 200 W

Main menu

Ex.: enter channel dimension: the device shows the measuring points in the crosssection.

NextPoint Switch Pa	withEnt use/Con	er.Q tinu	uickwit e with	hESC 2012 key! 10:	
Point 00	.867 m	01/ 01/	07 P	l RemainTime	Jorking 09 ss
Dynaimc Pressure	04.8		Static Pressure	00.000	
FlueTem. perature Atmospheric	800.0	C	Full Pressure	00.003	kPa
Pressure Flue	100.0	14	kPa		
Density	0.325		kg/m ³		
Velocity Diameter of	04.57		m/s	9.63	L/min
SampleNozzl			mm		
Exhaust Flo under workin	g conditio	n 00	41173	2.2 m ³ /h	
Exhaust Flo understanda		n 00	08535	2.1 m ³ /h	

Ex.: display during measurement : trend diagram of the chosen system parameter